Analysis and Comparative Evaluation of Discrete Tangent Estimators
نویسندگان
چکیده
This paper presents a comparative evaluation of tangent estimators based on digital line recognition on digital curves. The comparison is carried out with a comprehensive set of criteria: accuracy on smooth or polygonal shapes, behaviour on convex/concave parts, computation time, isotropy, aymptotic convergence. We further propose a new estimator mixing the qualities of existing ones and outperforming them on most mentioned points.
منابع مشابه
Convex Shapes and Convergence Speed of Discrete Tangent Estimators
Discrete geometric estimators aim at estimating geometric characteristics of a shape with only its digitization as input data. Such an estimator is multigrid convergent when its estimates tend toward the geometric characteristics of the shape as the digitization step h tends toward 0. This paper studies the multigrid convergence of tangent estimators based on maximal digital straight segment re...
متن کاملM-estimators as GMM for Stable Laws Discretizations
This paper is devoted to "Some Discrete Distributions Generated by Standard Stable Densities" (in short, Discrete Stable Densities). The large-sample properties of M-estimators as obtained by the "Generalized Method of Moments" (GMM) are discussed for such distributions. Some corollaries are proposed. Moreover, using the respective results we demonstrate the large-sample pro...
متن کاملMultigrid convergence of discrete geometric estimators
The analysis of digital shapes require tools to determine accurately their geometric characteristics. Their boundary is by essence discrete and is seen by continuous geometry as a jagged continuous curve, either straight or not derivable. Discrete geometric estimators are specific tools designed to determine geometric information on such curves. We present here global geometric estimators of ar...
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملCurvature Based Corner Detector for Discrete, Noisy and Multi-Scale Contours
Estimating curvature on digital shapes is known to be a difficult problem even in high resolution images . Moreover the presence of noise contributes to the instability of the estimators and limits their use in many computer vision applications like corner detection. Several recent curvature estimators , which come from the discrete geometry community, can now process damaged data and integrate...
متن کامل